1. YouTube Summaries
  2. Implementing GPT-2 from Scratch: A Comprehensive Guide

Implementing GPT-2 from Scratch: A Comprehensive Guide

By scribe 4 minute read

Create articles from any YouTube video or use our API to get YouTube transcriptions

Start for free
or, create a free article to see how easy it is.

Introduction

Understanding Transformers is crucial for anyone working in natural language processing or machine learning. This guide provides a comprehensive walkthrough of implementing GPT-2 from scratch, offering insights into the inner workings of this powerful language model.

Prerequisites

Before diving into the implementation, it's helpful to have:

  • A basic understanding of Python and PyTorch
  • Familiarity with neural network concepts
  • Some knowledge of natural language processing

Setting Up the Environment

To begin, we'll need to set up our development environment. This typically involves:

  • Installing Python
  • Setting up a virtual environment
  • Installing PyTorch and other necessary libraries

The Transformer Architecture

The Transformer architecture is the foundation of GPT-2. Let's break down its key components:

Embedding Layer

The embedding layer converts input tokens into vectors. It consists of:

  • Token embeddings
  • Positional embeddings

Transformer Blocks

Transformer blocks are the core of the model. Each block contains:

  • Multi-head attention layer
  • Feed-forward neural network
  • Layer normalization

Output Layer

The output layer converts the final hidden states into logits for next token prediction.

Implementing GPT-2 Components

Layer Normalization

Layer normalization is crucial for stabilizing the network. Here's a basic implementation:

class LayerNorm(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(config.d_model))
        self.bias = nn.Parameter(torch.zeros(config.d_model))
        self.eps = config.layer_norm_epsilon

    def forward(self, x):
        mean = x.mean(-1, keepdim=True)
        std = x.std(-1, keepdim=True)
        return self.weight * (x - mean) / (std + self.eps) + self.bias

Embedding Layer

The embedding layer combines token and positional embeddings:

class Embedding(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.token_embeddings = nn.Embedding(config.vocab_size, config.d_model)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.d_model)

    def forward(self, input_ids):
        seq_length = input_ids.size(1)
        position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
        position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
        
        token_embeddings = self.token_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        
        return token_embeddings + position_embeddings

Multi-Head Attention

Multi-head attention is a key component of the Transformer. Here's a simplified implementation:

class MultiHeadAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.num_heads = config.num_heads
        self.d_model = config.d_model
        self.d_head = self.d_model // self.num_heads
        
        self.query = nn.Linear(self.d_model, self.d_model)
        self.key = nn.Linear(self.d_model, self.d_model)
        self.value = nn.Linear(self.d_model, self.d_model)
        self.out = nn.Linear(self.d_model, self.d_model)
        
    def split_heads(self, x):
        batch_size, seq_length, _ = x.size()
        return x.view(batch_size, seq_length, self.num_heads, self.d_head).transpose(1, 2)
    
    def forward(self, x, mask=None):
        q = self.split_heads(self.query(x))
        k = self.split_heads(self.key(x))
        v = self.split_heads(self.value(x))
        
        attn_scores = torch.matmul(q, k.transpose(-1, -2)) / math.sqrt(self.d_head)
        if mask is not None:
            attn_scores = attn_scores.masked_fill(mask == 0, float('-inf'))
        
        attn_probs = F.softmax(attn_scores, dim=-1)
        context = torch.matmul(attn_probs, v)
        
        context = context.transpose(1, 2).contiguous().view(batch_size, seq_length, self.d_model)
        return self.out(context)

Feed-Forward Network

The feed-forward network processes information at each position:

class FeedForward(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.fc1 = nn.Linear(config.d_model, config.d_ff)
        self.fc2 = nn.Linear(config.d_ff, config.d_model)
        self.activation = nn.GELU()

    def forward(self, x):
        return self.fc2(self.activation(self.fc1(x)))

Transformer Block

A Transformer block combines multi-head attention and feed-forward layers:

class TransformerBlock(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.attention = MultiHeadAttention(config)
        self.feed_forward = FeedForward(config)
        self.layer_norm1 = LayerNorm(config)
        self.layer_norm2 = LayerNorm(config)

    def forward(self, x, mask=None):
        attn_output = self.attention(self.layer_norm1(x), mask)
        x = x + attn_output
        ff_output = self.feed_forward(self.layer_norm2(x))
        return x + ff_output

GPT-2 Model

Now, we can combine all these components to create the full GPT-2 model:

class GPT2(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.embedding = Embedding(config)
        self.blocks = nn.ModuleList([TransformerBlock(config) for _ in range(config.num_layers)])
        self.layer_norm = LayerNorm(config)
        self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)

    def forward(self, input_ids, mask=None):
        x = self.embedding(input_ids)
        for block in self.blocks:
            x = block(x, mask)
        x = self.layer_norm(x)
        return self.lm_head(x)

Training the Model

Training GPT-2 involves several steps:

  1. Preparing the dataset
  2. Setting up the optimizer
  3. Defining the loss function
  4. Creating the training loop

Here's a basic training loop:

model = GPT2(config).to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=config.learning_rate)

for epoch in range(config.num_epochs):
    for batch in dataloader:
        input_ids = batch['input_ids'].to(device)
        labels = batch['labels'].to(device)
        
        outputs = model(input_ids)
        loss = F.cross_entropy(outputs.view(-1, config.vocab_size), labels.view(-1))
        
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        print(f"Epoch: {epoch}, Loss: {loss.item()}")

Generating Text

Once the model is trained, we can use it to generate text:

def generate_text(model, prompt, max_length=100):
    model.eval()
    input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
    
    with torch.no_grad():
        for _ in range(max_length):
            outputs = model(input_ids)
            next_token_logits = outputs[:, -1, :]
            next_token = torch.argmax(next_token_logits, dim=-1).unsqueeze(-1)
            input_ids = torch.cat([input_ids, next_token], dim=-1)
            
            if next_token.item() == tokenizer.eos_token_id:
                break
    
    return tokenizer.decode(input_ids[0])

Conclusion

Implementing GPT-2 from scratch provides valuable insights into the workings of Transformer-based language models. This guide covered the key components and steps involved in building and training a GPT-2 model. By understanding these fundamentals, you'll be better equipped to work with and modify more complex language models in the future.

Remember that this implementation is a simplified version of GPT-2. The full model includes additional optimizations and features that improve performance and generation quality. As you continue to explore language models, you'll encounter more advanced techniques and architectures that build upon these core concepts.

Experimenting with different hyperparameters, model sizes, and training data can lead to interesting variations in model performance and generated text. Don't be afraid to modify the code and try new ideas – that's how progress in machine learning is made!

Finally, it's worth noting that while understanding the internals of models like GPT-2 is valuable, many practical applications today use pre-trained models and fine-tuning techniques. Libraries like Hugging Face's Transformers make it easy to work with state-of-the-art language models without having to implement everything from scratch.

Happy coding, and enjoy your journey into the fascinating world of language models!

Article created from: https://youtu.be/dsjUDacBw8o?feature=shared

Ready to automate your
LinkedIn, Twitter and blog posts with AI?

Start for free